

BIOTREATMENT OF PERCHLORATE IN GROUNDWATER

Paul B. Hatzinger, Ph.D. Envirogen, Inc.

November 29, 2000

TECHNICAL BACKGROUND

Biological Perchlorate Reduction

BIOLOGICAL PERCHLORATE REDUCTION

• Terminal Electron Acceptor:

$$ClO_4^- \longrightarrow ClO_3^- \longrightarrow ClO_2^- \longrightarrow O_2^- + Cl^-$$
(perchlorate) (chlorate) (chlorite) H_2O

• Highly Favorable Reaction (kJ/mol acetate)

$$-\Delta G = 844 \ (O_2 \longrightarrow H_2O)$$

$$-\Delta G = 801 \ (ClO_4^- \longrightarrow ClO_2^-)$$

$$-\Delta G = 792 \ (NO_3^- \longrightarrow N_2)$$

• Several Microbial Isolates Reported

Strain CBK (Bruce et al., 1999); Strain perace1 (Herman et al., 1999)

Strain GR-1 (Rikken et al., 1996)

Wolinella succinogenes HAP-1 (Wallace et al., 1996)

Ideonella dechloratans (Malvquist et al., 1994)

Vibrio dechloraticans (Korenkov et al., 1976)

TECHNICAL BACKGROUND

Biological Treatment

• Ex Situ Treatment

Fluidized Bed Reactor - Full Scale - (Aerojet/Envirogen).

Suspended Growth Reactor - Full Scale - (USAF/ARA).

Fixed Film Reactor- Pilot Scale - (USAF/Wallace et al, 1998).

• In Situ Treatment

Laboratory and Pilot Studies Show Promise for

In Situ Biostimulation (Envirogen/Geosyntec).

One Full-Scale System - McGregor NWIRP.

EX SITU TREATMENT FLUIDIZED BED REACTOR

AEROJET/ENVIROGEN

FBR Flow Schematic

Full-Scale System

Aerojet Facility - Rancho Cordova California

FBR SYSTEM

- 4 6 mg/L perchlorate
- -4,000 GPM flow rate
- Four 14 ft diameter units
- Ethanol as electron donor
- GAC media

Full-Scale FBR Performance

Pure Culture

Dechlorospirillum sp. FBR2

Perchlorate Degradation by FBR-2 Enrichment Culture

IN SITU TREATMENT

SERDP PROJECT CU-1163

(March 2000 - December 2001)

TECHNICAL APPROACH

In Situ Perchlorate Bioremediation

Key Question for Technology Development: Why does perchlorate persist in groundwater?

Hypotheses:

- Absence of suitable electron donor (substrate)?
- Inhibition by alternate electron acceptors?
- Lack of indigenous bacteria capable of perchlorate reduction?
- Unfavorable environmental conditions?

TECHNICAL APPROACH

Aquifer Microcosms

Serum Bottles:

Site Sediments
Site Groundwater

Tests:

- 1. Electron Donors
- 2. Alternate Electron Acceptors
- 3. Environmental Variables

TECHNICAL APPROACH ENVIROGEN

RESEARCH SITES

- (1) JET PROPULSION LAB (CA).*
- (2) INDIAN HEAD NSWC (MD) (2 Sites).*
- (3) ROCKY MT COMMERCIAL SITE.*
- (4) **OYSTER VIRGINIA** (Pristine Site).*
- (5) LONGHORN AAP (TX).
 - * Studies Underway or Complete

Rocky Mountain Site Groundwater Characteristics

1. Depth 89 - 99 ft (BLS)

2. Geochemistry

Perchlorate 60 mg/L

Nitrate 23 mg/L

Sulfate 364 mg/L

Chloride 2,500 mg/L

TDS 5,000 mg/L

pH 7.3

Co-Contaminants TCE, TCA, DCE, Cr

Perchlorate Degradation in Groundwater Microcosms from the Rocky Mountain Site

Treatment	Perchlorate Concentration (mg/L) ¹					
Electron Donors	Day 0					
Killed	57 <u>+</u> 2	60 <u>+</u> 2	53 <u>+</u> 2	60^{3}	55 ³	
No Addition	57 ± 2	60 <u>+</u> 1	53 <u>+</u> 1	53 <u>+</u> 2	54 <u>+</u> 1	
Nitrogen/Phosphorus only	57 <u>+</u> 2	62 <u>+</u> 5	55 <u>+</u> 1	59 <u>+</u> 1	55 ± 2	
Hydrogen	57 <u>+</u> 2	61 <u>+</u> 1	63 <u>+</u> 10	52 <u>+</u> 1	54 <u>+</u> 1	
Propane	57 <u>+</u> 2	62 ± 0	66 <u>+</u> 1	49 <u>+</u> 0	53 <u>+</u> 0	
Benzoate	57 <u>+</u> 2	62 <u>+</u> 2	62 <u>+</u> 1	49 <u>+</u> 3	48 <u>+</u> 2	
Ethanol	57 <u>+</u> 2	59 <u>+</u> 3	63 <u>+</u> 2	51 <u>+</u> 0	43 <u>+</u> 1	
Methanol	57 <u>+</u> 2	62 <u>+</u> 2	63 <u>+</u> 1	46 <u>+</u> 4	47 <u>+</u> 6	
Acetate (no N or P)	57 <u>+</u> 2	60 <u>+</u> 5	54 <u>+</u> 0	59 <u>+</u> 1	49 <u>+</u> 1	
Acetate	57 <u>+</u> 2	62 <u>+</u> 1	31 <u>+</u> 6	2 <u>+</u> 2	< 0.5	
Yeast Extract/Ethanol	57 <u>+</u> 2	60 ± 0	1 <u>+</u> 1	< 0.5	NS^2	
Lactate	57 <u>+</u> 2	60 <u>+</u> 1	< 0.5	< 0.5	NS	
Molasses	57 <u>+</u> 2	59 <u>+</u> 1	< 0.5	< 0.5	NS	
Sucrose	57 <u>+</u> 2	61 <u>+</u> 1	< 0.5	< 0.5	NS	
Inoculum Added						
Culture FBR2 + Etoh	57 <u>+</u> 2	15 <u>+</u> 1	< 0.5	< 0.5	NS	

IHDIV Naval Surface Warfare Center

Building 1170
300-Gallon Mixer
Washdown Water Discharge
1998 - Offsite Disposal

IHDIV Hogout Facility

1982 - 1994 (discharge)

1996 - Present (recycle)

IHDIV Naval Surface Warfare Center Sample Characteristics

	Hogout	Building 1170
1. Depth	6 - 13 ft (BLS)	4 - 12 ft (BLS)
2. Perchlorate	25 mg/L (water)	< 0.004 mg/L (water)
	45 mg/L (slurry)	< 0.004 mg/L (slurry)
3. pH	4.8/4.3 (w/s)	5.9/6.1 (w/s)
4. Alkalinity	19	40 mg/L
5. Sulfate	88 mg/L	12 mg/L
6. Nitrate	< 0.4 mg/L	< 0.2 mg/L
7. Nitrite	< 0.4 mg/L	< 0.2 mg/L
8. Chloride	26 mg/L	43 mg/L
9. Co-Contaminants	NA (binder/metals?)	fuel?

Influence of Electron Donors on Perchlorate Degradation in Aquifer Microcosms from IHDIV Building 1170 Site.

Perchlorate Degradation in Sediment/Groundwater Microcosms from the IHDIV Hogout Site

Treatment	Perchlorate Concentration				
	(mg/L)				
Electron Donors	Day 0	Day 11	Day 20	<i>Day 36</i>	Day 71
Killed Control	42 <u>+</u> 4	41 <u>+</u> 1	44 <u>+</u> 2	36 <u>+</u> 4	37 <u>+</u> 2
No Substrate	42 <u>+</u> 4	37 <u>+</u> 1	36 <u>+</u> 4	38 <u>+</u> 1	39 <u>+</u> 5
Nutrients Only	42 <u>+</u> 4	38 <u>+</u> 2	41 <u>+</u> 4	42 <u>+</u> 1	34 <u>+</u> 1
Hydrogen	42 <u>+</u> 4	38 <u>+</u> 2	40 <u>+</u> 4	32 <u>+</u> 5	35 <u>+</u> 2
Propane	42 <u>+</u> 4	38 <u>+</u> 1	39 <u>+</u> 2	34 <u>+</u> 2	37 <u>+</u> 2
Ethanol	42 <u>+</u> 4	39 <u>+</u> 2	41 <u>+</u> 2	36 <u>+</u> 4	36 <u>+</u> 3
Methanol	42 <u>+</u> 4	41 <u>+</u> 2	41 <u>+</u> 1	32 <u>+</u> 2	34 <u>+</u> 2
Acetate	42 <u>+</u> 4	39 <u>+</u> 1	42 <u>+</u> 2	33 <u>+</u> 1	37 <u>+</u> 1
Benzoate	42 <u>+</u> 4	40 <u>+</u> 1	43 <u>+</u> 0	32 <u>+</u> 1	38 <u>+</u> 1
Lactate	42 <u>+</u> 4	38 <u>+</u> 3	43 <u>+</u> 3	33 <u>+</u> 2	37 <u>+</u> 2
Molasses	42 <u>+</u> 4	43 <u>+</u> 2	43 <u>+</u> 2	28 <u>+</u> 1	36 <u>+</u> 2
Sucrose	42 <u>+</u> 4	44 <u>+</u> 1	45 <u>+</u> 0	31 <u>+</u> 0	35 <u>+</u> 0
Yeast Extract/Ethanol	42 <u>+</u> 4	43 <u>+</u> 2	44 <u>+</u> 2	35 <u>+</u> 3	37 <u>+</u> 2
Bioaugmentation					
Inoculum FBR2 ² + Etoh	42 <u>+</u> 4	41 <u>+</u> 1	44 <u>+</u> 3	36 <u>+</u> 2	36 <u>+</u> 2

Carbonate Titration Curve for Sediment Slurries from IHDIV Hogout Site.

Influence of pH on Perchlorate Degradation in Aquifer Microcosms from the IHDIV Hogout Site

JPL Groundwater Characteristics (MW-7)

1. Depth - 225 - 275 ft (BLS)

2. Geochemistry

Perchlorate 307 ug/L

Nitrate 18.6 mg/L

Oxygen 2.6 mg/L

Sulfate 44 mg/L

Alkalinity 140 mg/L

pH 7.6

Other CT (50 ug/L), CF (5 ug/L)

TCE(15 ug/L), **PCE (2 ug/L)**

Perchlorate Degradation in JPL Aquifer Microcosms Amended with Electron Donors or Perchlorate-Degrading Bacteria

Treatment	Perchlorate Concentration			
	$(\mu g/L)$			
Electron Donors	Day 0	Day 10	Day 21	
Killed Control	310 <u>+</u> 0	293 <u>+</u> 6	320 <u>+</u> 0	
Benzoate	310 <u>+</u> 0	297 <u>+</u> 6	150 <u>+</u> 135	
Methanol	310 <u>+</u> 0	77 <u>+</u> 57	< 5	
Hydrogen	310 <u>+</u> 0	177 <u>+</u> 61	< 5	
Propane	310 <u>+</u> 0	283 <u>+</u> 6	< 5	
No Addition	310 <u>+</u> 0	14 <u>+</u> 19	< 5	
Sucrose	310 <u>+</u> 0	92 <u>+</u> 67	< 5	
Ethanol	310 <u>+</u> 0	< 5	NS	
Lactate	310 <u>+</u> 0	< 5	NS	
Molasses	310 <u>+</u> 0	< 5	NS	
Yeast Extract/Ethanol	310 <u>+</u> 0	< 5	NS	
Acetate	310 <u>+</u> 0	< 5	NS	
Bacteria Added				
Killed + Culture FBR2	310 <u>+</u> 0	385 <u>+</u> 7	415 <u>+</u> 7	
Culture FBR2+ YE/Etoh	310 <u>+</u> 0	< 5	NS	
Culture FBR2+ Acetate	310 <u>+</u> 0	< 5	NS	

Perchlorate Degradation by Two Pure Cultures Isolated from JPL Groundwater.

Dechlorisoma suilla JPL-A5RAG/JPL-A5RND

Influence of Oxygen on Perchlorate Degradation in Aquifer Microcosms from JPL

Degradation of Perchlorate (100 mg/L) and Nitrate (100 mg/L) in Aquifer Microcosms from JPL with Ethanol as a Substrate

CONCLUSIONS

Substrate	Jet Propulsion Lab	Rocky Mountain	Indian Head (Bldg 1170)	Indian Head (Hogout)
Hydrogen				
Propane			NA	
Acetate				
Lactate			NA	
Benzoate			NA	
Methanol			NA	
Ethanol				
Molasses				
YE/Ethanol			NA	
Sucrose			NA	
FBR2-Culture				

Conclusions from Microcosm Studies Electron Demonstration Provident

- •Electron Donor Addition Promising In Situ Approach
- •Choice of Electron Donor Site Specific
- •Low pH (< 5) Inhibitory to Perchlorate Degradation
- •Oxygen Inhibitory to Perchlorate Degradation
- •Nitrate and Nitrite Degraded before Perchlorate

Rapid Biodegradation (≤ 14 Days)

Slow Biodegradation (≥ 14 Days)

No Biodegradation

IN SITU TREATMENT OPTIONS

In Situ Treatment Options

In Situ Treatment

Passive Flow-Through Biobarrier

In Situ Treatment

REACTIVE BARRIER TECHNOLOGY - FIELD SYSTEM

In Situ vs Ex Situ Treatment Both!

Factors

- Depth to Groundwater
- Plume Characteristics
- Aquifer Geochemistry
- Co-Contaminants
- Hydraulic Control
- Economics
- Waste Generation
- Water Use and Reuse
- Political Considerations
- Social Acceptance
- Regulatory Issues

CONTACT INFORMATION

Paul B. Hatzinger, Ph.D.

Envirogen, Inc.

4100 Quakerbridge Road
Lawrenceville, NJ 08648
hatzinger@envirogen.com
1-609-936-9300 (phone)
1-609-936-9221 (fax)